
A Static Binary Instrumentation Threading Model
for Fast Memory Trace Collection

Michael A. Laurenzano∗ Joshua Peraza† Laura Carrington∗ Ananta Tiwari∗ William Ward‡ Roy Campbell‡

∗ Performance Modeling and Characterization Laboratory
San Diego Supercomputer Center

University of California, San Diego
michaell@sdsc.edu, lcarring@sdsc.edu, tiwari@sdsc.edu

† Dept. of Computer Science and Engineering
University of California, San Diego

jperaza@cse.ucsd.edu

‡ High Performance Computing Modernization Program
United States Department of Defense

william.ward@hpc.mil, roy.campbell@hpc.mil

Abstract—As hardware vendors push for higher levels of
concurrency in multicore and manycore chips, the HPC software
running on that hardware must increasingly utilize sophisticated
models of parallelization, including interprocess message passing
via MPI or SHMEM, intraprocess data sharing via threading
models such as pthreads and OpenMP, and combinations of
the two approaches. With this increase it is important for tools
supporting HPC research activities to include support for all
available models of parallelism. In this work we introduce a
threading model recently integrated into PEBIL, an open source
static binary instrumentation framework for x86/Linux focused
on producing efficient instrumented HPC code. Previous versions
of PEBIL support instrumenting only programs utilizing message
passing models of parallelism; these upgrades allow PEBIL to
support shared memory models of parallelism implemented with
pthreads and OpenMP.

Binary instrumentation proves particularly useful in gaining
insights into the the behavior of data-driven HPC programs via
their interactions with machines’ memory subsystems. As such,
we compare the principles of PEBIL’s threading model to two
other popular x86/Linux binary instrumentation platforms, Pin
and DyninstAPI. We then compare PEBIL’s threading model to
Pin’s empirically using using a series of experiments centered
around memory address trace collection for the OpenMP im-
plementations of the NAS Parallel Benchmarks. Through these
experiments we show that the raw overhead of PEBIL’s threading
support and address stream generation is higher than Pin’s, but
that PEBIL is able to take advantage of sampling techniques
to decrease the overhead of address stream collection while
sampling with Pin is sensible only for programs with small code
footprints due to the overhead involved in repeatedly regenerating
instrumentation for each memory operation.

I. INTRODUCTION

HPC programs rely increasingly on complex parallelization
techniques, including message passing via MPI or SHMEM,
threading models based on pthreads or OpenMP, or combina-
tions of the two. It is critical that analysis tools remain able
to handle the variety of models of parallelism that appear in
HPC programs. Toward this end, PEBIL[1] has recently added
support for handling multithreaded x86 64 code in addition
to its existing support for codes parallelized using message

passing models. PEBIL is an open source binary instrumen-
tation toolkit, which inserts instrumentation by rewriting a
program executable statically. That is, PEBIL instruments a
program by inserting extra code and data into a compiled
executable, resulting in a runnable instrumented binary being
written to disk. This instrumented binary collects information
about the original program’s behavior as runs, retaining all
of the original functionality of the program. A major goal
of PEBIL is to produce instrumented HPC programs which
capture this program information while introducing as small a
runtime overhead as possible.

This work introduces the recently added support within
PEBIL for instrumenting codes that are multithreaded with
either pthreads or OpenMP along with several other novel
optimizations that uniquely suit PEBIL’s static instrumentation
model. PEBIL’s threading model is explored and compared to
two other popular x86/Linux binary instrumentation platforms
– Pin[2] and DyninstAPI[3]. We then go on to compare
PEBIL to Pin experimentally in the context of capturing mem-
ory address traces under several sampling scenarios for the
OpenMP-multithreaded implementations of the NAS Parallel
Benchmarks[4]. Collecting a memory address trace is a useful
way of stressing PEBIL’s thread support facilities, but is also
important because gaining insights into the memory behavior
of programs has been shown to be useful in a wide range
of research applications. Computer architects use memory ad-
dress traces to develop and refine memory subsystem designs.
Program behavior in terms of performance and correctness[5]
often depends heavily on memory behavior, making memory
address traces a useful tool for dealing with those aspects of
compiler and program development. Models of performance[6]
and energy[7] can also depend on the ability to understand how
programs utilize a memory subsystem.

The remainder of this paper is organized as follows. Sec-
tion II discusses some of the more important design decisions
encountered when adding support for multithreaded programs
to PEBIL. Section III provides a discussion of some other

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 NOV 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
A Static Binary Instrumentation Threading Model for Fast Memory
Trace Collection

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, San Diego,Performance Modeling and
Characterization Laboratory,San Diego Supercomputer Center,La
Jolla,CA,92093

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the International Workshop on Data-Intensive Scalable Computing Systems (DISCS), Salt
Lake city, UT, 16 Nov 2012. U.S. Government or Federal Rights License

14. ABSTRACT
As hardware vendors push for higher levels of concurrency in multicore and manycore chips, the HPC
software running on that hardware must increasingly utilize sophisticated models of parallelization,
including interprocess message passing via MPI or SHMEM, intraprocess data sharing via threading
models such as pthreads and OpenMP, and combinations of the two approaches. With this increase it is
important for tools supporting HPC research activities to include support for all available models of
parallelism. In this work we introduce a threading model recently integrated into PEBIL, an open source
static binary instrumentation framework for x86/Linux focused on producing efficient instrumented HPC
code. Previous versions of PEBIL support instrumenting only programs utilizing message passing models
of parallelism; these upgrades allow PEBIL to support shared memory models of parallelism implemented
with pthreads and OpenMP. Binary instrumentation proves particularly useful in gaining insights into the
the behavior of data-driven HPC programs via their interactions with machines? memory subsystems. As
such we compare the principles of PEBIL?s threading model to two other popular x86/Linux binary
instrumentation platforms, Pin and DyninstAPI. We then compare PEBIL?s threading model to Pin?s
empirically using using a series of experiments centered around memory address trace collection for the
OpenMP implementations of the NAS Parallel Benchmarks. Through these experiments we show that the
raw overhead of PEBIL?s threading support and address stream generation is higher than Pin?s, but that
PEBIL is able to take advantage of sampling techniques to decrease the overhead of address stream
collection while sampling with Pin is sensible only for programs with small code footprints due to the
overhead involved in repeatedly regenerating instrumentation for each memory operation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

binary instrumentation platforms, their threading models, and
how those models compare to PEBIL’s. Section IV describes a
set of experiments which compare three binary instrumentation
tools – PEBIL, Pin, and DyninstAPI – in terms of efficiency
for capturing memory address streams for threaded codes
under a variety of conditions. Finally, Section V concludes.

II. PEBIL’S THREADING MODEL

As a static binary instrumentation tool, PEBIL must de-
cide prior to runtime whether to instrument a program for
multithreading support. PEBIL provides support for detecting
the presense of thread-related constructs in the program but
ultimately lets user decides whether to support multithreading
when instrumenting a given program with a given instrumen-
tation tool. To aid this effort, PEBIL provides a command
line flag --threaded to allow the user to indicate when
they are instrumenting a program with support for threading.
In cases where the indication of this flag mismatches PEBIL’s
expectation of whether a program will use threads at runtime
(e.g., the program contains a call to pthread_create but
is not instrumented using the --threaded flag), a warning
is generated indicating that mismatch to the user.

There are many considerations that must be made when
designing and implementing support for the instrumentation of
multithreaded codes. We divide these considerations into two
broad categories – those which are required to produce correct,
thread-safe instrumented code and those that are required to
deliver thread-specific results from instrumented code.

A. Instrumenting for Thread Safety

PEBIL generates and inserts code into the program which
has two principle functions: (1) to add functionality to a
program, functionality which is usually focused on collecting
some type of information about what the running program
is doing, and (2) to protect the program’s state from being
destroyed by that extra functionality. The central consideration
when integrating support for multithreaded codes into PEBIL
is to utilize position independent code (PIC) for any such
instrumentation code. In many cases, position dependent code
(PDC) can be translated directly into PIC by simply using in-
direct or PC-relative calculations. In these cases, PIC is rarely
faster but also rarely much slower than the corresponding PDC
because using indirect and PC-relative addressing adds only a
small extra computational burden.

Certain operations, however, have no immediate translation
when switching from PDC to PIC. Since PEBIL must leave the
original functioning of a program intact around extra inserted
code, at each instrumentation point PEBIL may have to save
any registers that are defined by the instrumentation point and
restore them prior to returning control back to the program.
As a convenient and efficient way of accomplishing state
preservation, previous versions of PEBIL used a single fixed
memory region in the program as the storage site for spilled
program state. However, this simple technique is insufficient in
the presence of multiple threads because more than one thread
cannot safely share the same region of memory without also

using some mechanism to prevent basic concurrency errors.
Such synchronization mechanisms are very slow relative to the
typical operations being performed by instrumentation code,
making them untenable because they conflict with PEBIL’s
goal of generating efficient instrumented code. In order to
safely and efficiently save and restore state around instrumen-
tation in the presence of multiple threads, any necessary state
preservation operations are done on top of each thread’s private
execution stack. We now discuss two optimizations crafted
onto this basic state preservation model.

1) The flags Register: In the x86 64 architecture, a variety
of information about the status of the processor is held in the
flags register by way of a series of predefined status bits
contained within it. Since this register contains information
relevant to the operation of the program, it potentially needs
to be saved and restored around each instrumentation point.
PEBIL provides two levels of protection for the flags
register, a faster method which protects only its lower 8 bits
via the sahf/lahf instructions and a slower method which
protects a larger set of bits via the pushf/popf instructions.
To select the fastest available flags protection mechanism, or
no protection mechanism at all, PEBIL detects which flags
bits are live at a given instrumentation point and uses the
fastest method that provides protection to all live bits which
can be defined by the code at the instrumentation point.

PEBIL goes beyond this with its unique way of handling
of the overflow bit of the flags register. This treatment
stems from the following observations:

• overflow is one of a set of bits – carry, parity,
adjust, zero, sign and overflow – which are
the only flags bits defined by hundreds of (mostly
arithmetic) instructions in the x86 64 ISA.

• It is the only member of that set of bits outside of the
lower 8 bits of flags, requiring it to be handled by the
relatively slow pushf/popf protection mechanism.

• It is often obvious to the user that a sequence of code
will not produce an overflow.

Using these observations PEBIL exposes a knob allowing
the user to tell PEBIL that the code within a certain instru-
mentation point will not overflow despite the fact that the
instructions comprising that code can theoretically generate
overflows. For example, a common operation for instrumen-
tation code is to increment a 64-bit counter by 1. At modern
clock rates, it would take hundreds of years1 to overflow such
a counter even if it were executed once per cycle. By utilizing
the user’s guarantee of a non-overflow, PEBIL is more likely
to find points in the program where it can use the more
efficient sahf/lahf mechanisms instead of pushf/popf
when protecting the flags register.

2) Handling Leaf Functions: According to the x86 64
ABI, leaf functions can utilize up to 128 bytes above the
stack, the so-called red zone, without concern that some
asynchronous event like an interrupt will modify those bytes.

1The capacity of a 64-bit counter is 264 and modern clock rates rarely
exceed 3.0 GHz. 264/3.0 GHz = 194.98 years.

This allows compilers to optimize leaf functions that have
small static data footprints since in those cases the compiler
can avoid setting up and tearing down a stack frame. However,
PEBIL’s reliance on the stack for protecting program state
causes this optimization to be a complication for PEBIL
when instrumenting the code within those functions. When
generating the code for an instrumentation point that is both
in a leaf function and requires state protection, PEBIL must
take care to not overwrite any data potentially inside the red
zone. To accomplish this, PEBIL performs static analysis on
all of a program’s functions in order to recognize which are
leaf functions. When generating code for an instrumentation
point inside a leaf function that requires other state protection,
PEBIL automatically generates extra code around the instru-
mentation point which keeps the stack pointer out of the red
zone. This is done by decrementing the stack pointer by 128
bytes just before executing all other state saving operations
then incrementing the stack pointer by 128 bytes just after
executing all other state restoration.

B. Thread-local Instrumentation Data

In order to provide thread-specific information about the
activities of an instrumented program, it is necessary for
PEBIL to provide a mechanism which allows a thread to
quickly find a thread-local copy of its instrumentation data
structures. The distinction between maintaining a thread-local
copy of a data structure and maintaining synchronization
around a single shared data structure is important because
performance data gathered using the former approach can
often be far more useful than the latter. Whether data structures
are thread-local can also have dramatic consequences for the
performance of the instrumented program. For example, a
basic optimization for handling the memory address stream
eminating from a program is to buffer those addresses and
process them in batch. A tool which attempted to share a
single buffer between all threads would require synchronizing
access to that buffer either at a very fine granularity, which
would invariably generate large amounts of coherence-related
bus traffic, or at a course granularity, allowing only a single
thread to make progress at a time.

PEBIL provides thread-local data structures to an instru-
mented multithreaded program by providing a hook to thread
creation which allows thread-local data structures to be gen-
erated for each new running thread. These data structures are
made accessible though a single table, shared by all threads,
which contains a small pool of memory for each thread. This
memory pool can contain anything of interest to the thread, but
is currently only 32 bytes so in practice is limited to holding
the addresses of other interesting data structures for all but the
simplest instrumentation tools. For collecting memory access
traces, for example, this pool contains just the address of a
buffer which holds memory addresses that are waiting to be
batch processed. The remainder of this section details how a
thread accesses its private memory pool at runtime as well
as an optimization which allows the location of that memory
pool to be cached for short periods of time.

1) Finding Thread-local Data at Runtime: Each thread
has access to a small pool of private memory through a
shared table that it is provided to each process in a PEBIL-
instrumented program. For some thread, that thread’s index
into this table IDX is derived using the formula IDX = (TID
>> 12) & 0xffff, where TID is the unique identifier for
the thread. This formula yields a value for IDX within the
range [0,65536) which is simply the value of bits 12-
27 of the thread’s unique identifier. From the standpoint of
efficiency, this method is perfect since it can generate IDX
from scratch2 in as few as three instructions in x86 64:

mov %fs:0x10,%r10 // move TID into %r10
shr $12,%r10 // %r10 = %r10 >> 12
and $0xffff,%r10 // %r10 = %r10 & 0xffff

Note however that this will generate identical indices for
any threads which share bits 12-27 in their unique identifiers.
In principle, no guarantee of uniqueness of these bits between
threads exists. In practice, though, we have seen conflicts of
this sort only begin to appear when running over 16 threads per
process. To resolve cases like this, currently PEBIL intercepts
all thread create calls, verifying for each new thread that no
existing thread has a table index which conflicts with the new
thread’s table index. Upon conflicts, rather than backing into
a slower mode which is able to guarantee a resolution, PEBIL
currently generates a runtime error. None of the experiments
described in Section IV ever encountered this failure.

2) Caching Thread-local Data: Even though the instruction
sequence generating the location of a thread’s private memory
pool is short, it needs to be executed at every instrumentation
point which refers to the thread’s private memory pool. Un-
fortunately, we can generally expect detailed instrumentation
tools to require access to the memory pool very frequently,
as often as every basic block or memory instruction. Instead
of requiring the location of a thread’s private memory pool to
be re-computed every time a thread executing instrumentation
code needs to access thread-local data, PEBIL attempts to
cache the computed location in a dead register so that it
need not be recomputed by every subsequent instrumentation
point. PEBIL’s current implementation examines code at the
function level to determine whether any single register is dead
at every point in the function. If no such register is found,
PEBIL falls back to computing the thread’s private memory
pool location each time it is required. However, if such a
register is found, PEBIL inserts code to compute the location
of the memory pool only at the entry and re-entry (that is,
immeditately following a call to another function) points to the
function. Future work within PEBIL should include facilities
which analyze the program at more granular levels such as
within loops or basic blocks in an attempt to further utilize
dead registers to cache this value.

III. RELATED WORK

Here we identify other notable x86/Linux binary instru-
mentation projects. There are many other x86/Linux binary

2In x86 64 a thread’s unique identifier is always stored in %fs:0x10.

instrumentation projects – Pin [2], DyninstAPI [3] and Val-
grind [8] being the most popular. This section focuses on
Pin and DyninstAPI due to space considerations and because
Valgrind was designed for particular types of useful but heavy-
weight instrumentation tools, distinguishing itself in terms of
functionality at the cost of efficiency. Similarly, numerous
binary instrumentation tools covering other architectures and
operating systems exist but are out of the scope of this work.

Pin is a popular dynamic binary instrumentation tool which
supports threads by providing API hooks for thread cre-
ation/desctruction and for associating a number of data struc-
tures with each thread. PEBIL performs all state preservation
on a thread’s stack, while Pin sets aside a distinct region of
heap memory for every thread. In Pin this region of memory is
made accessible to a multithreaded instrumented program by
storing its location at all times in some general purpose register
which is stolen from the program. This approach is possible
because Pin utilizes a sophisticated dynamic code optimization
engine to transform the program around the stolen register.

DyninstAPI is a dynamic binary instrumentation tool and
static rewriter. DyninstAPI supports threading by providing
a class which allows the control and examination of run-
time threads. DyninstAPI also provides the tools for building
limited expressions to implement hand-coded instrumentation
code sequences, which also have access to the unique identifier
of the executing thread. The mechanisms used to control and
interact with threads at runtime and the facilities through
which hand-coded instrumentation is expressed are richer
than anything PEBIL provides, however they are for more
heavyweight. The support for utilizing the thread identifier in
hand-coded instrumentation is somewhat similar to PEBIL’s
in concept, though while PEBIL uses a single instruction
to get the thread identifier into a register, DyninstAPI uses
a far more heavyweight mechanism which dives through
at least two functions plus any necessary state protection
that results. DyninstAPI also lacks a facility for caching the
thread identifier or other thread-related information that might
allow instrumentation code to reuse thread-related values once
computed. In the following section, our experiments focus
on PEBIL and Pin because the thread access mechanisms in
DyninstAPI generate overheads that are too large to practically
run multithreaded codes of any significant size with fine-
grained instrumentation.

IV. EXPERIMENTAL RESULTS

We now present the results of an empirical study on
the overhead of gathering memory address traces for multi-
threaded codes. These experiments use aggressively optimized
PEBIL and Pin tools to collect memory address traces for the
OpenMP implementations of the NAS Parallel Benchmarks[4]
A list of all benchmarks along with breif descriptions of them
is provided in Table I. The test system used in all experiments
is a dual-socket, 8-core Intel Xeon X3450 where each core has
a 32KB dedicated L1 cache and 256KB of L2 cache. All four
cores on a socket share 8MB of L3 cache and all 8 cores on the
board share 16GB of memory. Each experiment is performed

using a single process and 8 OpenMP threads, chosen because
it is equal to the number of CPU cores available on the system.
Furthermore, all results presented here are computed as the
mean of three independent runs of the particular experiment.

TABLE I
NAS PARALLEL BENCHMARK DESCRIPTIONS

Name Description Input Code Size (KB)
BT block tri-diagonal solver B 65.9
CG conjugate gradient B 14.6
DC data cube W 25.6
EP embarassingly parallel B 7.9
FT discrete 3D fast Fourier Transform B 19.8
IS integer sort C 5.3
LU lower-upper Gauss-Seidel solver B 67.6
MG multi-grid on mesh sequence B 26.9
SP scalar penta-diagonal solver B 58.3

A. Thread Support Overhead

The first experiment we present is intended to demonstrate
the overhead of frequently accessing thread-specific data in
the multithreaded workload described in Table I. To show
this we use PEBIL and Pin to instrument each program in
this workload to fill a buffer with every memory access
eminating from program executable’s image To avoid the
negative performance consequences of providing concurrent
access to a single buffer by all threads, each thread interacts
with a private buffer throughout the instrumented program run.
The sequence of interactions a thread has with its private
buffer are to (1) fill it with memory addresses, (2) call
into a minimal processing function which updates a shared
count of the number of memory accesses seen by the process
then empties the buffer, and finally (3) return control to the
instrumented application to refill the buffer. The buffer size
for each tool was optimized for speed using a small set
of empirical tests resulting the following buffer sizes which
are used throughout the remainder of these experiments –
32KB for PEBIL and 128KB for Pin. Since the focus of
this experiment is on the overhead of providing threading
support rather than any specific appliction of using memory
address traces, the memory addresses in those buffers are
simply discarded as quickly as possible, then control returned
to the program to begin filling the buffer again. The results of
these experiments are given in the upper part of Table II and
are phrased as the slowdown of the instrumented application
runtime relative to the uninstrumented runtime. These results
demonstrate that, while the overhead of collecting all memory
addresses with PEBIL is higher than with Pin, the level of
overhead in PEBIL is generally reasonable.

B. The Effects of Sampling

Gathering and utilizing the entire memory address stream
of a program is generally impractical due to the amount of
processing that is required on top of the overhead of collecting
the addresses. A common approach to easing this difficulty
is to introduce interval-based sampling, reducing the fraction
of the memory address stream that is processed. In many
cases this can result in extracting the desired properties of the

TABLE II
MEMORY ADDRESS TRACE COLLECTION OVERHEAD

BT CG DC EP FT IS LU MG SP GEOM-MEAN

Full Trace PEBIL 14.12 5.78 2.01 2.50 6.23 5.75 10.75 10.45 5.24 5.90
Pin 7.08 4.42 4.14 2.95 4.37 6.04 5.71 6.26 3.49 4.76

50% Sampled PEBIL 8.51 4.11 1.86 1.98 4.04 3.99 6.59 6.41 3.38 3.27
Pin 11.46 4.69 3.46 2.83 3.63 4.95 11.60 8.67 8.98 5.89

10% Sampled PEBIL 4.09 2.74 1.85 1.56 2.36 2.53 3.32 3.37 1.91 2.52
Pin 11.20 4.48 3.52 2.71 3.05 4.67 11.06 6.30 8.13 5.40

1% Sampled PEBIL 3.07 2.43 1.81 1.47 1.98 2.19 2.59 2.63 1.58 2.14
Pin 9.52 4.35 3.40 2.73 2.92 3.98 10.10 5.81 8.14 5.07

memory address stream while greatly reducing the cost of that
extraction[6]. In the event that the instrumentation tool can dis-
able or remove instrumentation code during the instrumented
program run, sampling in this fashion can also reduce the
cost of collecting the memory addresses themselves. PEBIL is
capable of quickly disabling and re-enabling arbitrary instru-
mentation points at runtime by swapping instrumentation code
for nops. Pin can remove and arbitrarily reinstrument code,
which is more versatile than PEBIL’s approach but comes at
the expense of runtime efficiency.

We demonstrate this by introducing the concept of interval-
based sampling into the experiment discussed in Section IV-A.
In this set of experiments, we use three shades of sampling
whereby we capture the first 50%, 10% and 1% of the memory
addresses of every interval of 1 billion addresses. During
these runs, the instrumentation tool disables and re-enables
instrumentation around the sampled regions of the program’s
memory address stream. The results of this are seen in Table II,
which show that the overhead of collecting memory accesses
with PEBIL diminishes as more of the program’s memory
addresses are lost to sampling. This is not necessarily the case
for Pin even with the large sampling windows used in these
experiments since instrumentation must be regenerated at each
sampling exchange. How effective removal and re-insertion
of instrumentation is depends principally on the number of
instrumentation points that are present in the program.

For the tools being used here these values can be approx-
imated by the size of the code in the benchmark executable,
which can be seen in Table I. Because of the computationally
expensive methods Pin uses to insert and remove instrumenta-
tion, proportional improvements in overhead is not seen across
the board when performing sampling. Note the increases in
overhead for sampling with Pin for benchmarks with larger
code footprints like BT, LU and SP in comparison to the far
better behavior on benchmarks with a smaller code footprint
like CG, EP and IS. It is important to point out here that
these results do not destroy the case for using sampling in
cases where the processing of the captured memory addresses
is expensive because sampling can still be used to mitigate the
processing overhead, though they indicate that the tool writer
must be careful in determining how to implement sampling.

V. CONCLUSIONS

HPC software will continue to evolve and transform to
utilize the high levels of concurrency offered by current and
upcoming multicore and manycore chips. This evolution will

utilize complex models of parallelization to include both inter-
process and shared memory models built on top of threading
platforms like OpenMP and pthreads. Support for sophisticated
analysis tools support is necessary for helping the community
better understand what is required to make this transition
in a way that minimizes errors and performance pitfalls.
Toward that goal, this work presented an extension the open
source static binary instrumentation framework PEBIL which
provides support for instrumenting multithreaded programs
implemented with both pthreads and OpenMP. We discussed
PEBIL’s threading model, some optimizations surrounding that
model, and how that model compares to two other popular
binary instrumentation platforms – Pin and DyninstAPI – in
theoretical terms. We then used a series of memory address
trace collection tools to demonstrate that PEBIL has a reason-
able thread model in terms of the functionality offered and the
overhead that it introduces, and that PEBIL is well-suited to
taking advantage of sampling in order to reduce the overhead
of collecting memory address traces.

REFERENCES

[1] M.A. Laurenzano, M.M. Tikir, L. Carrington, and A. Snavely. Pebil:
Efficient static binary instrumentation for linux. In Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE International Symposium
on, pages 175–183. IEEE, 2010.

[2] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200. ACM, 2005.

[3] B. Buck and J.K. Hollingsworth. An api for runtime code patching.
International Journal of High Performance Computing Applications,
14(4):317–329, 2000.

[4] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber,
et al. The nas parallel benchmarks summary and preliminary results.
In Supercomputing, 1991. Supercomputing’91. Proceedings of the 1991
ACM/IEEE Conference on, pages 158–165. IEEE, 1991.

[5] J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference, pages
17–30, 2005.

[6] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance predic-
tion framework for scientific applications. Computational ScienceICCS
2003, pages 701–701, 2003.

[7] M. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. Tikir, and
S. Poole. Reducing energy usage with memory and computation-aware
dynamic frequency scaling. Euro-Par 2011 Parallel Processing, pages
79–90, 2011.

[8] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan Notices, 42(6):89–100,
2007.

